A novel multi-objective particle swarm optimization with K-means based global best selection strategy
نویسندگان
چکیده
In this paper, a multi-objective particle swarm optimization algorithm with a new global best (gbest) selection strategy is proposed for dealing with multi-objective problems. In multi-objective particle swarm optimization, gbest plays an important role in convergence and diversity of solutions. A K-means algorithm and proportional distribution based approach is used to select gbest from the archive for each particle of the population. A symmetric mutation operator is incorporated to enhance the exploratory capabilities. The proposed approach is validated using seven popular benchmark functions. The simulation results indicate that the proposed algorithm is highly competitive in terms of convergence and diversity in comparison with several state-of-the-art algorithms.
منابع مشابه
A Multi-Objective Particle Swarm Optimization Algorithm for a Possibilistic Open Shop Problem to Minimize Weighted Mean Tardiness and Weighted Mean Completion Times
We consider an open shop scheduling problem. At first, a bi-objective possibilistic mixed-integer programming formulation is developed. The inherent uncertainty in processing times and due dates as fuzzy parameters, machine-dependent setup times and removal times are the special features of this model. The considered bi-objectives are to minimize the weighted mean tardiness and weighted mean co...
متن کاملBroadcast Routing in Wireless Ad-Hoc Networks: A Particle Swarm optimization Approach
While routing in multi-hop packet radio networks (static Ad-hoc wireless networks), it is crucial to minimize power consumption since nodes are powered by batteries of limited capacity and it is expensive to recharge the device. This paper studies the problem of broadcast routing in radio networks. Given a network with an identified source node, any broadcast routing is considered as a directed...
متن کاملPSO for multi-objective problems: Criteria for leader selection and uniformity distribution
This paper proposes a method to solve multi-objective problems using improved Particle Swarm Optimization. We propose leader particles which guide other particles inside the problem domain. Two techniques are suggested for selection and deletion of such particles to improve the optimal solutions. The first one is based on the mean of the m optimal particles and the second one is based on appoin...
متن کاملTask Scheduling Using Particle Swarm Optimization Algorithm with a Selection Guide and a Measure of Uniformity for Computational Grids
In this paper, we proposed an algorithm for solving the problem of task scheduling using particle swarm optimization algorithm, with changes in the Selection and removing the guide and also using the technique to get away from the bad, to move away from local extreme and diversity. Scheduling algorithms play an important role in grid computing, parallel tasks Scheduling and sending them to ...
متن کاملReconfiguration of Electric Distribution Network Using Modified Particle Swarm Optimization
This paper presents the application of modified form of Particle Swarm Optimization as an optimization technique to the reconfiguration of electric distribution systems. The intended reconfiguration is an optimization and decision-making process which considers the maximization of the number of loads supplied associated to the minimization of the number of closed switches. A novel selection reg...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Int. J. Computational Intelligence Systems
دوره 6 شماره
صفحات -
تاریخ انتشار 2013